Dynamic Recruitment of Nek2 Kinase to the Centrosome Involves Microtubules, PCM-1, and Localized Proteasomal Degradation□D □V

نویسندگان

  • Rebecca S. Hames
  • Renarta E. Crookes
  • Kees R. Straatman
  • Andreas Merdes
  • Michelle J. Hayes
  • Alison J. Faragher
  • Andrew M. Fry
چکیده

Centrosomes undergo dramatic changes in composition and activity during cell cycle progression. Yet mechanisms involved in recruiting centrosomal proteins are poorly understood. Nek2 is a cell cycle–regulated protein kinase required for regulation of centrosome structure at the G2/M transition. Here, we have addressed the processes involved in trafficking of Nek2 to the centrosome of human adult cells. We find that Nek2 exists in small, highly dynamic cytoplasmic particles that move to and from the centrosome. Many of these particles align along microtubules and a motif was identified in the Nek2 C-terminal noncatalytic domain that allows both microtubule binding and centrosome localization. FRAP experiments reveal that 70% of centrosomal Nek2 is rapidly turned over (t1/2 3 s). Microtubules facilitate Nek2 trafficking to the centrosome but only over long distances. Cytoplasmic Nek2 particles colocalize in part with PCM-1 containing centriolar satellites and depletion of PCM-1 interferes with centrosomal recruitment of Nek2 and its substrate C-Nap1. Finally, we show that proteasomal degradation is necessary to allow rapid recruitment of new Nek2 molecules to the centrosome. Together, these data highlight multiple processes involved in regulating the abundance of Nek2 kinase at the centrosome including microtubule binding, the centriolar satellite component PCM-1, and localized protein degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation.

Centrosomes undergo dramatic changes in composition and activity during cell cycle progression. Yet mechanisms involved in recruiting centrosomal proteins are poorly understood. Nek2 is a cell cycle-regulated protein kinase required for regulation of centrosome structure at the G2/M transition. Here, we have addressed the processes involved in trafficking of Nek2 to the centrosome of human adul...

متن کامل

The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis.

Nek2 is a mammalian cell cycle-regulated serine/threonine kinase that belongs to the family of proteins related to NIMA of Aspergillus nidulans. Functional studies in diverse species have implicated NIMA-related kinases in G(2)/M progression, chromatin condensation and centrosome regulation. To directly address the requirements for vertebrate Nek2 kinases in these cell cycle processes, we have ...

متن کامل

A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators.

Nek2, a mammalian protein kinase of unknown function, is closely related to the mitotic regulator NIMA of Aspergillus nidulans. Here we show by both immunofluorescence microscopy and biochemical fractionation that human Nek2 localizes to the centrosome. Centrosome association occurs throughout the cell cycle, including all stages of mitosis, and is independent of microtubules. Overexpression of...

متن کامل

Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis

Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed up...

متن کامل

Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans

Centrosomes mature as cells enter mitosis, accumulating gamma-tubulin and other pericentriolar material (PCM) components. This occurs concomitant with an increase in the number of centrosomally organized microtubules (MTs). Here, we use RNA-mediated interference (RNAi) to examine the role of the aurora-A kinase, AIR-1, during centrosome maturation in Caenorhabditis elegans. In air-1(RNAi) embry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004